Diffusional properties of methanogenic granular sludge: 1H NMR characterization.

نویسندگان

  • Piet N L Lens
  • Rakel Gastesi
  • Frank Vergeldt
  • Adriaan C van Aelst
  • Antonio G Pisabarro
  • Henk Van As
چکیده

The diffusive properties of anaerobic methanogenic and sulfidogenic aggregates present in wastewater treatment bioreactors were studied using diffusion analysis by relaxation time-separated pulsed-field gradient nuclear magnetic resonance (NMR) spectroscopy and NMR imaging. NMR spectroscopy measurements were performed at 22 degrees C with 10 ml of granular sludge at a magnetic field strength of 0.5 T (20 MHz resonance frequency for protons). Self-diffusion coefficients of H(2)O in the investigated series of mesophilic aggregates were found to be 51 to 78% lower than the self-diffusion coefficient of free water. Interestingly, self-diffusion coefficients of H(2)O were independent of the aggregate size for the size fractions investigated. Diffusional transport occurred faster in aggregates growing under nutrient-rich conditions (e.g., the bottom of a reactor) or at high (55 degrees C) temperatures than in aggregates cultivated in nutrient-poor conditions or at low (10 degrees C) temperatures. Exposure of aggregates to 2.5% glutaraldehyde or heat (70 or 90 degrees C for 30 min) modified the diffusional transport up to 20%. In contrast, deactivation of aggregates by HgCl(2) did not affect the H(2)O self-diffusion coefficient in aggregates. Analysis of NMR images of a single aggregate shows that methanogenic aggregates possess a spin-spin relaxation time and self-diffusion coefficient distribution, which are due to both physical (porosity) and chemical (metal sulfide precipitates) factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image analysis, methanogenic activity and molecular biological techniques to monitor granular sludge from an egsb reactor fed with oleic acid

Morphological changes in anaerobic granular sludge fed with increasing loads of oleic acid were quantified by image analysis. The combination of this technique with data on the accumulation of adsorbed long chain fatty acid give insight into the mechanisms of sludge disintegration, flotation and washout The molecular characterization of microbial community indicated that the bacterial domain wa...

متن کامل

Characteristics of Granular Sludge in an EGSB Reactor for Treating low Strength Wastewater

A lab-scale expanded granular sludge bed (EGSB) reactor was operated at 20°C with low strength wastewater (0.6-0.8 g COD/L) for over 200 days. Reactor was inoculated with mesophilic granular sludge. The up-flow velocity was set to 5 m/h by effluent recirculation. The COD loading was increased up to 12 kg COD/m3/day until the day 76, resulting in hydraulic retention time of 1.5 hours. Physical p...

متن کامل

Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge.

The thermophilic, anaerobic, propionate-oxidizing bacterial populations present in the methanogenic granular sludge in a thermophilic (55 degrees C) upflow anaerobic sludge blanket reactor were studied by cultivation and in situ hybridization analysis. For isolation of propionate-degrading microbes, primary enrichment was made with propionate as the sole energy source at 55 degrees C. After sev...

متن کامل

Biomethanation of Syngas Using Anaerobic Sludge: Shift in the Catabolic Routes with the CO Partial Pressure Increase

Syngas generated by thermal gasification of biomass or coal can be steam reformed and purified into methane, which could be used locally for energy needs, or re-injected in the natural gas grid. As an alternative to chemical catalysis, the main components of the syngas (CO, CO2, and H2) can be used as substrates by a wide range of microorganisms, to be converted into gas biofuels, including met...

متن کامل

Molecular monitoring of microbial diversity in expanded granular sludge bed (EGSB) reactors treating oleic acid.

Abstract A molecular approach was used to evaluate the microbial diversity of bacteria and archaea in two expanded granular sludge bed (EGSB) reactors fed with increasing oleic acid loading rates up to 8 kg of chemical oxygen demand (COD) m(-3) day(-1) as the sole carbon source. One of the reactors was inoculated with granular sludge (RI) and the other with suspended sludge (RII). During operat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 69 11  شماره 

صفحات  -

تاریخ انتشار 2003